A Machine Learning Based Strategy to theOptimized Investment Portfolio
نویسندگان
چکیده
منابع مشابه
Machine Learning and Portfolio Optimization
We modify two popular methods in machine learning, regularization and cross-validation, for the portfolio optimization problem. First, we introduce performance-based regularization (PBR), where the idea is to constrain the sample variances of the estimated portfolio risk and return. The goal of PBR is to steer the solution towards one associated with less estimation error in the performance. We...
متن کاملStochastic Portfolio Theory: A Machine Learning Approach
In this paper we propose a novel application of Gaussian processes (GPs) to financial asset allocation. Our approach is deeply rooted in Stochastic Portfolio Theory (SPT), a stochastic analysis framework introduced by Robert Fernholz that aims at flexibly analysing the performance of certain investment strategies in stock markets relative to benchmark indices. In particular, SPT has exhibited s...
متن کاملa paradigm shift away from method-wise teaching to strategy-wise teaching: an investigation of reconstructive strategy versus communicative strategy
چکیده: هدف اصلی این مطالعه ی توصیفی تحقیقی در حقیقت تلاشی پساروش-گرا به منظور رسیدن به نتیجه ای منطقی در انتخاب مناسبترین راهکار آموزشی بر گرفته از چارچوب راهبردی مطرح شده توسط والدمر مارتن بوده که به بهترین شکل سازگار و مناسب با سامانه ی آموزشی ایران باشد. از این رو، دو راهکار آموزشی، راهکار ارتباطی و راهکار بازساختی، برای تحقیق و بررسی انتخاب شدند. صریحاً اینکه، در راستای هدف اصلی این پژوهش، ر...
15 صفحه اولPortfolio Investment Based on Gene Expression Programming
A novel method of stock portfolio management by using technical indicators is proposed in this paper. The method hybridizes the consensus trading signals generated by the gene expression programming (GEP) proposed by Lee et al., and the portfolio redemption scheme proposed by Tsai et al. with our stock ranking functions. The indicators were used not only for trading, but also for selecting prom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Software & Hardware Research in Engineering
سال: 2021
ISSN: 2347-4890
DOI: 10.26821/ijshre.9.3.2021.9307